3.125 \(\int \frac{1}{\sqrt{2+5 x^2-x^4}} \, dx\)

Optimal. Leaf size=48 \[ \sqrt{\frac{2}{\sqrt{33}-5}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{33}}} x\right ),\frac{1}{4} \left (-29-5 \sqrt{33}\right )\right ) \]

[Out]

Sqrt[2/(-5 + Sqrt[33])]*EllipticF[ArcSin[Sqrt[2/(5 + Sqrt[33])]*x], (-29 - 5*Sqrt[33])/4]

________________________________________________________________________________________

Rubi [A]  time = 0.0983492, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {1095, 419} \[ \sqrt{\frac{2}{\sqrt{33}-5}} F\left (\sin ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{33}}} x\right )|\frac{1}{4} \left (-29-5 \sqrt{33}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[2 + 5*x^2 - x^4],x]

[Out]

Sqrt[2/(-5 + Sqrt[33])]*EllipticF[ArcSin[Sqrt[2/(5 + Sqrt[33])]*x], (-29 - 5*Sqrt[33])/4]

Rule 1095

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[2*Sqrt[-c], I
nt[1/(Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] &&
LtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{2+5 x^2-x^4}} \, dx &=2 \int \frac{1}{\sqrt{5+\sqrt{33}-2 x^2} \sqrt{-5+\sqrt{33}+2 x^2}} \, dx\\ &=\sqrt{\frac{2}{-5+\sqrt{33}}} F\left (\sin ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{33}}} x\right )|\frac{1}{4} \left (-29-5 \sqrt{33}\right )\right )\\ \end{align*}

Mathematica [C]  time = 0.0619445, size = 55, normalized size = 1.15 \[ -i \sqrt{\frac{2}{5+\sqrt{33}}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{\sqrt{33}-5}} x\right ),\frac{5 \sqrt{33}}{4}-\frac{29}{4}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/Sqrt[2 + 5*x^2 - x^4],x]

[Out]

(-I)*Sqrt[2/(5 + Sqrt[33])]*EllipticF[I*ArcSinh[Sqrt[2/(-5 + Sqrt[33])]*x], -29/4 + (5*Sqrt[33])/4]

________________________________________________________________________________________

Maple [B]  time = 0.241, size = 80, normalized size = 1.7 \begin{align*} 2\,{\frac{\sqrt{1- \left ( -5/4+1/4\,\sqrt{33} \right ){x}^{2}}\sqrt{1- \left ( -5/4-1/4\,\sqrt{33} \right ){x}^{2}}{\it EllipticF} \left ( 1/2\,x\sqrt{-5+\sqrt{33}},5/4\,i\sqrt{2}+i/4\sqrt{66} \right ) }{\sqrt{-5+\sqrt{33}}\sqrt{-{x}^{4}+5\,{x}^{2}+2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-x^4+5*x^2+2)^(1/2),x)

[Out]

2/(-5+33^(1/2))^(1/2)*(1-(-5/4+1/4*33^(1/2))*x^2)^(1/2)*(1-(-5/4-1/4*33^(1/2))*x^2)^(1/2)/(-x^4+5*x^2+2)^(1/2)
*EllipticF(1/2*x*(-5+33^(1/2))^(1/2),5/4*I*2^(1/2)+1/4*I*66^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-x^{4} + 5 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^4+5*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(-x^4 + 5*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-x^{4} + 5 \, x^{2} + 2}}{x^{4} - 5 \, x^{2} - 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^4+5*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^4 + 5*x^2 + 2)/(x^4 - 5*x^2 - 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- x^{4} + 5 x^{2} + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x**4+5*x**2+2)**(1/2),x)

[Out]

Integral(1/sqrt(-x**4 + 5*x**2 + 2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-x^{4} + 5 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^4+5*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(-x^4 + 5*x^2 + 2), x)